• <bdo id="gcfsv"></bdo>

    <menuitem id="gcfsv"></menuitem>
    1. 當前位置 : > 初中學習方法 > 初中數學 >

      初中數學一次函數知識點總結

      2014-01-29 11:35 | 來源:網絡資源 | 作者:未知 | 本文已影響

       

       一、定義與定義式:
      自變量x和因變量y有如下關系:
      y=kx+b
      則此時稱y是x的一次函數。
      特別地,當b=0時,y是x的正比例函數。即:y=kx (k為常數,k≠0)
       
      二、一次函數的性質:
      1.y的變化值與對應的x的變化值成正比例,比值為k   即:y=kx+b (k為任意不為零的實數 b取任何實數)
      2.當x=0時,b為函數在y軸上的截距。
       
      三、一次函數的圖像及性質:
      1.作法與圖形:通過如下3個步驟
      (1)列表;
      (2)描點;
      (3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
      2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
      3.k,b與函數圖像所在象限:
      當k>0時,直線必通過一、三象限,y隨x的增大而增大;
      當k<0時,直線必通過二、四象限,y隨x的增大而減小。
      當b>0時,直線必通過一、二象限;
      當b=0時,直線通過原點
      當b<0時,直線必通過三、四象限。
      特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
       
      四、確定一次函數的表達式:
      已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
      (1)設一次函數的表達式(也叫解析式)為y=kx+b。
      (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
      (3)解這個二元一次方程,得到k,b的值。
      (4)最后得到一次函數的表達式。
       
      五、一次函數在生活中的應用:

      1.當時間t一定,距離s是速度v的一次函數。s=vt。
      2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。
       
      六、常用公式:
      1.求函數圖像的k值:(y1-y2)/(x1-x2)
      2.求與x軸平行線段的中點:|x1-x2|/2
      3.求與y軸平行線段的中點:|y1-y2|/2
      4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2  (注:根號下(x1-x2)與(y1-y2)的平方和)

      更多與文本相關內容,請查看 【 初中數學 】 欄目    


      ------分隔線----------------------------
      ------分隔線----------------------------

       

      熱點內容
      初中數學二次函數知識點總結
      初中數學一次函數知識點總結
      初中數學知識點總結:平面直角坐標
      證明三角形全等的一般思路
      初中數學知識點總結:二次函數
      初中數學知識點總結:勾股定理及其
      初中數學知識點總結:銳角三角函數
      初中數學知識點總結:相似三角形
      三角形公式定理
      怎樣才能學好數學?
      xvideos国产在线视频